
BY (:EORGANA SWEET, DAC.

Melbourne University.
(With Plates NIX., XX.).
Rend ath July, 1904.7.
A number of variations in the mophology of this form have been already described (sue bibliography), but one occasionally comes across others, during the disection of the number: which pass thr ựh the hands of Junior students in Biological Laboraturies. It is desirable that a record should be made of these. Accordingly there are gathered together here the more important of those noticed during the last few years in the Bialorical Laboratory of the Thiversity of Melboume. I wish to thank Professur Baldwin Spencer; Dr. T. S. Hall and others for directing my attention to rariations. which might not otherwise have e ome under my notice.

I.-Blood Vessels.

(i).-Arteries.

There have recently come under my notice three individuals of this species. two of which (A and B) have 4 aortic arches on either side instead of 3 , ats in a normal specimen, the third (C) having 4 arches on the one side. but only 3 on the other. One of these was found some years agor, one in 1907, one in 1908. In each (see Text figures 1-3) the additional arch lies

specimen A of Hyla uniea, hatring four arterial arehes in the arlult.

1. Citrotid arth.
-2. Systemic arrla.
2. Festigial areh.
f. Pulmo-cotaneous areh

Fig 1

FIC 2

Fig 3
between the systemic and puhmo-cutaneous arches, and arises from the pulmo-cutaneous arch, close to its origin from the right or left half of the truncus arteriosus. It then runs outwards between the muscles, M. petrohyoideus II. and III., and on one side (R) of individual A , it coits about considerably dorsal to M. petrohyoideus III. and ventral to the systemic arch, which crosses the path of this ressel on its way round the nesophagus. In both A and B, and on each side, the extra arch opens into the cutaneous artery soon after the latter leaves the pulmo-cutaneous arch. In individual A (Text figure 1) the extra arch divides into two ressels, one criling round to meet the cutaneous artery, the other ruming forwards and outwards to the skin. In the other individual B (Text figure 2) the extra arch does not coil, but runs almost straight into the cutaneous artery, griving off just before this union, a small ressel which runs inwards to the muscles of the laryngeal wall. I was umable to determine whether the systemic also gave off a
vessel to the larynx, as it had been cut previously to coming into my possession. There was in this animal no vessel to be found corresponding to that going to the skin from the extra arch in the other individual. In C (Text figure 3) the extra arch on the R. side does not open into the cutaneous artery at all. but gives off a large and long branch, accompanying it to its destination. The rest of this arch curls inwards to open into the systemic arch after giving off branches to the surrounding muscles.

It is quite evident that this extra arch corresponds to the ard branchial arch of the embryo which normally disappears in the frog, but has in these cases been retained.
ln a fourth individual (Text figure 4) there were only the

FIG 4

Individual of Hyla aura, showing abnormal Carotid and Systemic arches.

1. Carotid arch.
2. Systemic arch.
3. Pulmo-cutaneous arch.
o. Occipital artery.
s. Subclavian artery.
e. Oesophageal arteries.
d.a. Dorsal aorta.
c.-m. Coeliaco-mesenteric artery.
usual 3 arches, of which only the L. carotid and R. and L. pulmo-cutaneous arches are normal. The right carotid arch, after giving off the lingual artery, continues round as an abnormally large vessel to empty into the riglit systemic arch just where the latter gives off the occipital and subclavian arteries, and two branches to the roof and sides of the aesophagus. There is no branch corresponding in destination to the ordinary carotid artery on this R. side. On the left side the carotid arch is normal, but the left systemic arch ends abruptly just after giving off the oceipital and subclavian arteries.

Thus we have here on the right side a disappearance of the part of the right half of the dorsal aorta anterior to the lst branchial arch of the tadpole: while the eonnection between this arch and the 2 nd arch, which usually persists as a solid, comnective-tissue thread, the ductus Botalli, is here still widely open.

On the left side, the part of the left half of the dorsal aorta posterior to the origin of the subclavian artery has disappeared. It is difficult to understand how the brain gets its normal supply of blood, since the right carotid artery is absent, and no other ressel appears to take its place, and the left carotid artery is only normal in size and distribution. The arteries in general appear less subject to rariation than do the reins. It may be noticed that nccasionally the oesophageal arteries leave the systemic arch behind instead of in front of the subclavian arteries.

> (ii).-_reins.

These show a curions tendency to split into 2 branches, reuniting a little distance on, thus forming a loop (see Text figure 5) generally not surrounding any special structure. This

Abnormalities in veins helonging to the precaval system of Hyla aurea.
A.V.C. Anterior Vemal cava.
E.J. External Jugular Vein.
1.J. Interual Jugular Vein.
I. Innominate Vein.
sr. Subscapular Veiu.
Sin. Subclavian Vein. $^{\text {m }}$
looping of the veins, especially seen in the mandibular, external jugular, :and femoral reins, has been much more conspicuous in the frogs this year (1908) than previously. The chief radiations found are as follow:

Anterior leona Cara. There is usually not only one lingual rein. lout a m omber of smaller ones coming from the floor of the month and entering the mandibular vein, chiefly in front of the entrance of the main lingual vessel. Rarely, the lingual itself arises by several large branches which unite close to the external jugular rein. The mandibular rein receives generally a large branch from the skin just as it turns inwards at the angle of the jaw. Occasionally a connection was found between the two external jugular veins across the ventral surface of the body.

The second main rein of this system, the so-called innominate of the Amphihia, ant its branches, are the most variable in the body. The innominate rein may be comparatively long, ie., up to $\tilde{5}-6 \mathrm{~mm}$. At other times, it is entirely absent, its two component branches entering the anterior rena ava side by side (see Text figure 5). Rarely, the internal jugular, subscopular, and main subelarian veins all enter a short, wide vessel. which joins the external jugular vein to form the anterior vena cara (see Text figure 6). As an exaggeration along

Abnormal precaval venous system of Hyla area.
(Reference letters as in Text-figure $)^{\text {s }}$).

FIG 6

this same line of variation, the whole innominate vein, with a length of 1 mm., has been seen to empty into the subclavian vein, at about one-half of the length of the latter (see Text figure 7). A further development of the condition in which

Abnormal precaral venous system of Hyla aura.
(Reference letters as in Text-figure 5).
there is simply no innominate rein, is seen in a case (see Text ficure 8) in which the subscapular rein entered the mandibular

Abnormal precaval venous system of Hyla аигеа.
(Reference letters as in Text-figure 5).

Fic 8

juzt before the latter was joined by the lingual rein-the internal jugular miting with the external jugular and subclavian to form the anterior vena cava. On the other hand, it is a comparatively common occurrence to find the subscapular rein entering at any point of the subclavian rein.

The internal jugular vein itself occasionally shows a curious branching (see Text figure J). In addition to its usual branches in the head, it sometimes receives two very large dorsal or rertebral reins, and in addition, in two examples, these were joined by a rery large ressel coming from the roof of the ocsophagus. In one case, this originated in a large plexus. This takes place on each side of the body, this oesophageal rein rumning ventral to the brachial nerve and subclavian artery, and dorsal to the subscapular and subclawian reins.

With the exception of the variations mentioned above, the subclavian weins do not show any marked abnormalities. In one instance, however, a vein arising from the oesophageal wall. entered the subclavian vein, instead of going further forward to the intermal jugular rein, as described above. It is also quite a common occurrence to find one, or often two vessels from the coracoid region entering the subclavian rein at varying distances along its length.

The Posterior Vena Cava appears free from variations.
The Portal Systems are also fairly constant in their arrangement. A ferr abnormalities, however. may occasionally be found, e.g., an extra renal portal rein on one or both sides, a
looping of the femoral vein just before its division into renal portal and pelvic reins, or a plexus with large or small ressels at the same part. In two specimens I came across a curious condition of the anterior abdominal vein, which, though full of blood posteriorly. stopped short, in one case. half way along it.s length, in the other somewhat further forward. In neither indivilual therefore, was the blond able to pass forwards to the liver in the usual direct manner from this ressel. nor was 1 able to find :any abnormal communication with other rewels.

II.-Spinal Nerves.

Since the publication of my previous paper on the Variations of the Spinal Nerves of this form, some few additional points havo come to light, although in the main there is nothing fresh.

I am adhering to the numeration of the nerves in this prerious paper for the sake of easier comparison therewith.
II.-The Ifypoglossal. The muscular branches of this nerre vary considerably in their point of origin. Sometimes they arise much eloser to the rertebral column than at others, and then often by a single large branch which can be easily seen without dissection. This, later, breaks up into the branches supplying the sereral muscles. This has been much more conspicuous this year than usual. The hypoglossal is usually it moderately thin nerve, but in one instance noted it was as large an the brachial nerve, which, however, was much smaller than usual. Here, alsu, a large additional coraco-clavicular nerve was given ofi from the hypuglossal.

This year there has been a marked tendency to a duplicating or splitting of the spinal nerves either as, or before they leare the spinal canal. This is true in a few cases of the hypoglossal, the two parts running side by side and each branching in the normal manner.
111.- The Brachial is very constant, though the same luoping scen in the veins this year is seen in this nerve also, in a few instances. In one or two of these, the IInd nerve fuserl with one part of the loop, leaving it again before the junction.

IV'.-In one instance IV. was equal in size to III., and the two completely fused together just after the coraco-claricular had been given off. This is evidently an exaggeration of the
condition shown in Fig. 5, iii. (Sweet, '97). The duplication of nerves is seen also in this one (see Text figure 9 of the present

Brachial and two succeeding nerves of right side.

Fig 9

paper), the anterior division running sharply forwards first ventral to, then turning dorsal to, the transverse process of the IIIrd vertebra, and running back to accompany the posterior division to its destination.
T., VI, and VII. call for no comment, except that one may rarely be absent on one or both sides-especially the 5ththe vertebral column being normal in these cases.
VIII., $I X$., .Y. and XI. are, as previously described. subject to considerable variation. The variations show no departure in general from those then given. Fig. I. (i) appears fairly often, and then generally with XI. entering the sciatic nerve, after the crural has been given off, as in Fig. 4 (i.). In cases where XI. is large, and has such an intimate relation with the sciatio plexus, one is generally sure of finding a XIIth nerve, indicating the more primitive condition.

This condition is somewhat similar to that shown by Cole for Ranu temporario, withont a pust-coccygeal nerse, and for Runu esculeuth, with a post-coccygeal nerve.

A number of examples of double V'IIIth nerves were found, generally on one side only. They were sometimes equal in size, less often the more posterior division was very fine indeed.

As examples of the more advanced condition of this plexus may be cited the following:-VIII. large, IN. normal, X. smaller than usual, XI. absent (cf. loc. cit., Fig. ., viii.). In amother case in which VIII. and IX. were equally large, and fused high up, to form the sciatio nerve, the Xth and XIth were rery small indeed, and their plexus received a tiny branch from the fused VIIl. and IX., and at a lower level gave back to them an even smaller twig.
roll. This is found in $3-1$ per cent. of eases, as previously described, and only when XI, is larger than usual.

It will be seen that I ann still of the opinion that, so far as evidence shows up to date, the satal plexus appars to be muring forwards, the eoceveral nerve gradually diminishing in physiolorical importance, as previously shown by Adolphi (93, '95, 98 -) and myself (97-). Cole (p. 116) ationowledges the fact that as "the vertebral axis shortens up from behind, forwards, to produce the eomplex known as the urostyle, several of the most posterino spinal nerves are eliminated in the process," as shown by Adolphi (loc. cil.). At the same time, he considers that the satral plexus is moving back-i.e., he apparently believes that up to a certain stage a reduction of spinal nerres in the sacral region takes phate, followed in the next stage by an addition of nerves in the same relative positions as were those which have been lost. Until we have much more definite eridence of such an apparently uneconomical method of development, either in the individual or the group, it is unnecessary to imagine such a process.

As to the statistical method employed by Adolphi and myself, which Cole considers open to criticism, while agreeing that the thickness of a nerve may not be an infallible guide as to its physiological power, it appears to me-in the absence of direct evidence to the contrary in the Amphibia-that it may be accepted as an indication of probable importance.

III. Urinogenital System.

V'ariations in the structure of this system are very rare. In one instance, found this year, there was present on each side in a male frog, a medimm-sized. well-formed oriduct. This extended from the fumnel at the anterior end, as far as the middle of the length of the kidney, where it ended abruptly. For the greatest part of its length it coiled in the usual manner. The two sides were similar. No trace of a "Bidder"s organ" could be found, and the vasa efferentia and fat bodies were normal. From a surace examination the testes also appeared normal, but a series of sections showed clearly the presence of 15-20 ora, scattered irregularly through the substance of the testes,
generally singly, but sometimes in groups of two. Here, for some reason or other, the Mullerian duct has gone on developing more than is usualiy the case in the male frog, and some of the cells of the germinal epithelium have formed ova; but still no communication has been established between the oviduct and the cloaca. There can be, therefore, no functional activity of the oviduct, at all events.

IV. Skeleton.

(i).--Vertebral C'olumn.

Tariations in the skeleton are also to be met occasionally. The most remarkable example which has been seen here is that shown in Pl. xix., Fig. 1-for which figure I am indebted to Professor Baldwin Spencer. In this individual (W), it will be seen that the neural arches, as well as the bodies of the vertebre, are very much distorted, those of the 7th and 8th being fused together, that of the 9 th being completely fused with the urostyle. The malformation of all the processes is very conspicuous. Although there is the correct number of transverse processes on the right side, their number and relationships on the left side are quite abnormal. On reference to the figure, it may be observed that the left transverse process of the 2nd vertebra has become articulated to the 1st vertebral body-that of the 3rd is now on the 2nd, and so on to the large transverse process of the sacral vertebra 9, which is attached to the hinder part of the left side of the fused 7 th and 8 th bodies-while the part of the urostyle representing the 9 th body. has on its left side a small backwardly directed process, and on the right the large sacral process is articulated with it.

In a second individual (X) (see Pl. xix., Fig. 2), both sides of the slieleton showed a somewhat similar condition to that present on the left side of the previous one (W), i.e., the transverse processes of each of the 2 nd to the 9 th vertebre are transferred to the vertebra in front. The 9th vertebra, which is not fused with the urostyle, has no true transerse processes. Its posterior aygapophyses, however, are very much elongated, and, riewed from below, may be seen to have a connection with the side of the neural arch, as though a rudimen-
tary franserse process on each side had become fused with the zrgapophysis, as it elonganted to take on the general functions of the transwerse proeesses. The borlies of vertebre 1 to 7 are normal. That of 8 is procoelons, but is abnomal posterionly where it has two convex surfaces, one on each side, as is normal for number 9. The latter, again. is abnormal anteriorly, its 2 concave surfaces fitting on to number 8 . Posteriorly 9 is normal except that its 2 conrexities are rery prominent, and the urostyle is correspondingly deeply eoncave.

In ret a third indiridual (Y), (see Pl. xix., Fig. 3), exactly the same condition of the 8 th and 9 th processes and vertebre is present: i.e., the sacral processes are on the 8 th vertebra, and 9 carries two rery long posterior zygapophyses, equal in size to the transwerse processes of the th vertebra -but, as contrasted with (N), the rest of the rertebral column is quite normal. So that, while in (Y) the large processes of the 3rd vertebra are normal, in (X) they are situated on the 2nd vertebra. The centrab of (1) are very similar to those of (X), except that the hinder end of the 8th body is very irregular on the left side, the opposed part of the 9 th being correspondingly irregularthe hinder end of 9 and the urostyle are normal.

It is not innusual to find processes on either or both sides of the urostyle itself in otherwise normal frogs (e.g., Pl. xix., Figs. 4 and j). Sometimes these processes are as long as those of the 5th, 6ith and 7 th rertebre, and evidently represent those of a potential 10th rertebre fused with the urostyle. The bodies of the vertebre of the sacral region are normal in these specimens.

Since writing the ahore, a 6 th skeleton, evidently that of IHylu arren, has been handed to me. This individual (V) is shown in Pl. xx., Figs. 8a, 8b. The whole vertelral colnmn is rery short. This is due, primarily, to a widespread fusion of parts in its anterior region. Vertebre $6-9$ are normal as regurds size, shape and relationships, though the lody of 8 shows hardly any ossification. The remaining vertcbre are, however, much changed. Vertebra 1 consists of a ventral body, carrying on its right side one half of the normal neural arch, with the right concare articulating surface, which receives the corresponding condyle on the right exoccipital bone. The left half of the
neural atch is wanting and correspondingly the leit exoccipital has no condyle, the vertebral column being simply rery closely comnected with the skull on the left-so closely that it is only after careful examination that one is sure that it is not fused. The bodies of the 2nd, 3rd, 4th and 5th vertebre are completely fused, and somewhat distorted. This rentral fused mass is prococlous, and convex behind. The bodies of the 2nd, 3rd and 4th vertebre are ineomplete on the left side (see Pl. xx., Fig. 8b). The neural arches of the 2nd and 3id, and of the 4 th and 5th. are fused in a peculiar distorted way, which may be readily seen on reference to Pl. xx., Fig. Ea. The transrerse processes, which are slightly broken, appear to have been nearly normal on the right side. On the left, however, those belonging to the 2 nd and 3rd vertebre are absent, the space left in this way and by the incomplete centra forming a long oval opening through which, presumably, the 2nd, 3rd, 4 th and 5 th spinal nerves left the spinal column on the left side. The transrerse processes of the 4 th and 5 th vertebrae on this left side arise from the region of the anterior part of the 5th neural arch by a broad common base, which soon splits into ${ }^{2}$, one turning outwards and forwards, the other ruming outwards and very slightly backwards. The transverse processes of the 6 th and 9 th are appreciably larger on the left than on the right. The general relations of the vertebra will be seen clearly on reference to the Plate xx., Figs. 8a and 8b. The rareness of such variations in IIyla aurea may be guessed from the fact that the rariations herein recorded have been gathered from orer two thousand frogs.

Fusion of rertehre is not unknown in the Anura, though 1 am not aware of its harving been previously recorded in Hyla. In addition to the eases in Pipa and Tenopus, figured by Ridewood (1897), the following are the chief reeords arailable to me:-
$1+2 \quad$ Pelobates fuscus, symmetrical. Adolphi, 9.5, tigs. 2, 3
". Rana mugiens, not ",
$1+2+3$. Pelohates fuscus ,, ,
$2+3$ Bufo cinerens, ,
$3+4$ ", ,
Rama mugiens, not ",
$3+++\bar{i}, \quad, \quad, \quad$,
Benham, 9 -4, tigs. 1, 3, 4,6
Adolphi, 9.9, tig. 5
9R, tig. 1
, , \quad -
Bemham, 94, tigs. 1, 2
, '9 4 ;figs. $\mathbf{i}, 8,9,10$

+ $5+6$, Bufo cinereus, symme	tical.	Adolphi, '9x, fig. 3
$i+i \quad$ liama mugiens, not	,	Benham, 94, figs. 1, 2
$8+9$ Ranai esculenta	-	Howes, 93, fis. 1
,. ., ". .	,	Cole, '01, tig. 1
,. ,, ,	"	Rideworrl, ${ }^{2.2}, 1$ p. 46
$8+9$ Pelobates fuscus	"	Adolphi, '95, figss. 10, 11
$8+$ urostyle Bufo cinereus,	"	
$s+9+$ urostyle,		
Bufo rariabilis, nearly	"	Adolphi, '93, tis. 4
," pantherinus	,	Benham, '94, fig. 16
$9+$ urostyle,		
Bufo rariabilis	"	Adolphi, 'y: , figs. 6.
$9+10+$ (?) urostyle		
Pelobates fuscus	"	Adolphi, '95, figs. ㄹ. 3.
		4, 6, 7,8

From this table it is easily seen that the fusion of rertebrie 2, 3, 4 and 5. in individual (V) of Hyla is somewhat more extensive, resulting in greater distortion and loss of parts, especially as inrolving one of the condyles of the skull, and the 2nd and 3rd transverse processes, and the left side of the bodies, resulting in a shortening of the whole vertebral column. The curious arrangement found in (W), (see Pl. xix., Fig. 1), whereby each vertebra from ! - 8 carries a transterse process belonging on the left, apparently to the vertebra behind, as well as its own on the right, is comparable in part with that shown by Benham (94 , Figs. 1 and 2), though brought about in a different mamer. There is there, however, no interference with the arrangenent of the sacral processes, such as we find here. In this respect this specimen of Hyla mare rather be compared with the reitebral column figured lyy Adolphi (98 . Figs. 7 and \&), though not exactly similar even to that, the body of vertebra 9 leeing in that case still distinguishable from the urostrle, while here it is completely fused. The position of the sacral processes on $\&$ instead of on 9 , as seen here in (X) and (Y), may be compared with Adolphi's (9R), Fig. 5, though there the 9 th is indistinguishable from the urostyle, while here it is not in any way fused. A similar disjunction is seen in the specimen of Rana temporaria. quoted by Llord Morgan (Nature, vol. 35. , 5:3), in which the right sacral process is carried by the 9th vertebra,
while the left sacral process is carried by the 8th-also somewhat similarly in Bombinator sp., by Howes, in which he found the right sacral process on the head of the urostyle ($=$ "coccrgeal sacrum "), the left being, presumably, on the 9 th vertebra.

Accepting the view that the positions of the vertebre are determined by the original myotomes of the embryo, the pelvis being only secondarily affected, it is easy to understand that not only may any vertebra become sacral in function, but, further, if the iliac cartilages be disturbed or irregular in position, the sacral processes will become correspondingly irregular in their attachments to the relatively fixed vertebre.

The existence of the processes belonging to a potential 10 th vertebra. which is not infrequent in Hyla curea, and is exemplified in Pl. X1X., Figs. 1, tand 5, has also been noted by Adolphi in Bufo cinereus, etc.

In view of our present unsatisfactory method of estimating the homologies of similar structures (see Parker, 96, and Bateson, '92). I have simply recorded in detail the rariations found, mumbering the parts concerned according to the conventional mamer, and giving exact drawings to scale of the same.

> (ii).-A ppendicular skeleton.

The curved epicoracoids characteristic of the Hylidae, as of other families of the Arcifera, vary somewhat in their relation to one another in Hylu ancrea. The more usual condition is that in which, while not firmly attached to one another, the right epicoracoid lies ventral to the left-but in approximately 4 per cent. of individuals the reverse is the ease, the right being dorsal to the left.

In a few instances variations are found in the limbs. Thus in one case, while one foot was quite normal, the phalanges of the other foot showed a curious variation from the numbers characteristic of each toe (sce Pl. xx., Fig. 6). Thus, instead of the 1st, 2nd, 3rd, 4th and 5 th toes containing 2. 2, 3, 4, 3 phalanges respectively, as is usually the case, they here contained $2,3,4,3$ and 3 respectively i.e., the second and third toes had each one more phalan than usual, and the fourth one less than usual, the third toe being the longest, instead of
the fourth. as is usial. The length of the metatarsals also was abnormal - the th, and especially the ath. being much shorter than the 3rd, instead of, as usual, equal in length with it.

In annther individual (Pl. xx.. Figs. Ta and 7 b), both feet were abnormal. and also unlike one another. In the left foot there were only 4 toes, the metatarsal and phalanges of the first being alsent. In the right foot there were 6 toes, an additional metatarsal and 2 phalanges being present on the postaxial side of the normal 5th toe. The metatarsals of the 3 rd, th and 5 th thes are normal, that of the additional toe leeing only equal in length to that of the 2nd. The bases of the th and 5th metatarsals, while not completely fused, are partially so.

In a third individual, the right font was normal, as also the calcar, 3rd, 4 th and 5 th toes of the leit foot. The lst toe on the left foot contained only the one metacarpal and no phalanx, as in the thumb. The 2nd toe contains only the one metacarpal and one phalanx. The metacarpals of both 1 st and 2 nd toes are swollen distally.

There is no appreciahle difference in the other bones of the limb in any of the above cases.

Bibliography.

Adolphi, H. Morph. Jahrb., Bd. xix., 1893, p. 313.
Adolphi, H. Morph. Jahrl., Bd. xxii., 1895, p. 449.
Adolphi. H. Morph. Jahrl)., Bd. xxr.. 1898. p. 115.
Bateson. W. Proc. Zool. Soc. Lond., 1892, p. 102.
Bateson. Wr. "Materials for the Study of Variation," 1894.
Benham. W. B. Proc. Zool. Soc. Lond., 1894, p. 477.
Bourne, A. G. Quart. Jour. Micr. Sci., N.S.. rol. xxir., 1884, p. 83 .

Cole, F. J. Proc. Biol. Soc. Liverpool, vol. 15, 1901, p. 114.
Howes, G. B. Jour. Anat. and Phys., xxiv., 1890. p. xri.
Howes, G. B. Proc. Zool. Soc. Lond., 1893, p. 268.
Marriner. F. R. Trans. N. Zealand Inst., , J. xxxviii., 1905, p. 257 .

Morgan, G. Lloỵd. Nature, vol. 35. 1886, p. 53.
Parker, G. H. Anat. Anz., Bd. xi.. 1896, p. 711.
Ridewood. IT. G. Anat. Anz., Bd.. xiii., 1897, p. 364.

Ridewood, IV. G. Proc. Linn. Soc. Lond., 1902, p. 46-7.
Shore, - Jour. Anat. and Phys. Lond., xr., 1901. p. 323.
Sweet, G. Proc. Roy. Soc. Vic., vol. ix., N.S., 1897, p. 264.
For further bibliography see Cole, Parker, Ridewood (1897), etc.

ENPLANATION OF PLATES XIN. AND XX.

Fig. 1.-- Whole vertebral column of specimen W, of Hyla aurea, showing fused 7 th and 8 th vertebre, and 9 and urostyle.

Fig. 2. - Whole vertebral column of specimen X , with each pair of transverse processes attached to the vertebra in front of the normal one.

Fig. 3.-- Vertebre 6, 7, 8, 9 and urostyle of specimen Y', showing sacral processes on vertebra 8 .

Figs. 4 and 5.-Vertebree 8, 9, and urostyle of specimens ZA and ZB, showing well-developed processes on the urostyle.

Fig. 6.-Right foot, showing abnormal 3rd and 4th toes, dorsal view.

Figs. 7a, 7b.-Right and left feet respectively, showing abnormality in toes of each. Dorsal view.

Figs. 8a, 8b.-Whole vertebral column of individual V, showing fusion of vertebræ, etc. 8a, Dorsal view. 8b, Ventral view.

In each case the figures are life-size.

